CSP SunShot SUMMIT 2016: RECEIVERS

PROBLEM STATEMENT & VALUE PROPOSITION

- Radiative heat losses are maximized in conventional receiver designs due to direct reflections and emittance to the environment
- Radiative heat losses become more important as we move toward higher temperature receiver designs
- Use of fractal-like, bladed, or other non-planar geometries can:
 - Increase light-trapping
 - Reduce radiative and thermal heat losses
 - Allow increased solar flux concentration for increased thermal efficiency
 - Apply to both tubular and particle receivers

Tubular Receivers Light-trapping geometries Reduced radiative view factors in hottest regions Increased concentration ratio by reducing optical aperture size while maintaining same surface irradiance

OBJECTIVES & APPROACH

Employ fractal-like (zig-zag, volumetric) particle receiver designs to increase efficiency at higher particle temperatures

- Develop computational models and experiments:
 - Characterize particle flow and stability for novel release patterns
 - Optimize release patterns to maximize particle temperature rise and thermal efficiency relative to baseline (planar) case
 - Perform on-sun tests to validate models

Case	Depth (m)	Scaled Illustration	Case	Depth (m)	Scaled Illustration
Baseline	N/A		Case 7	0.2	
Case 1	0.4		Case 8	0.2	
Case 2	0.4		Case 9	0.2	
Case 3	0.4	WW	Case 10	0.4	
Case 4	0.4	$\bigvee\bigvee\bigvee$	Case 11	0.6	
Case 5	0.2		Case 12	0.4	
Case 6	0.2	WWW	Case 13	0.6	

RESULTS

Simulated thermal efficiency and radiative heat loss for different particle release patterns

PATH TO MARKET

- Collaborated with Abengoa Solar on design of 1 MW falling particle receiver system in Spain
- Received DOE APOLLO award with Abengoa Solar on hightemperature falling particle receiver for combined air-Brayton cycle
- Working with DOE ELEMENTS program to develop reactive particle receivers with thermochemical storage
- Developing concepts and designs for solarized supercritical
 CO₂ Brayton cycles

FUNDING & KEY INSTITUTIONS

- FY16 FY17: \$880K (DOE)
- Sandia National Laboratories

